d-exact categories and *d*-cluster tilting arXiv:2502.21064

Sondre Kvamme

June 26, 2025

Sondre Kvamme

d-exact categories and d-cluster tilting

June 26, 2025

∃ ⇒

Reconstruction problem

 \mathcal{E} exact category, $M \in \mathcal{E}$ *d*-cluster tilting. Can we determine \mathcal{E} from $End_{\mathcal{E}}(M)$?

< 1 k

∃ ⇒

Plan of the talk

- Background.
- 2 Main results.
- Idea of proofs.

< (17) × <

▶ < ∃ >

э

Background

Background

Definition

A conflation category is a pair $(\mathcal{E}, \mathcal{S})$ where

- \mathcal{E} is an additive category
- S is a class of kernel-cokernel pairs in \mathcal{E} , i.e. $S \subset \{E_1 \xrightarrow{f} E_2 \xrightarrow{g} E_3 \mid f \text{ kernel of } g \text{ and } g \text{ cokernel of } f\}.$ Assume S is closed under isomorphisms.

Elements of S are called *conflations*.

A conflation category is an additive category with an additional structure.

Exact categories

Idea: Inherit the conflations from abelian categories.

Definition

An *exact category* is a conflation category $(\mathcal{E}, \mathcal{S})$ where \mathcal{E} is equivalent to a full *extension-closed* subcategory of an abelian category \mathcal{A} such that \mathcal{S} are the kernel-cokernel pairs in \mathcal{E} which are sent to short exact sequences in \mathcal{A} .

Here $\mathcal{B} \subseteq \mathcal{A}$ extension-closed means if $0 \to A_1 \to A_2 \to A_3 \to 0$ short exact sequences in \mathcal{A} with $A_1, A_3 \in \mathcal{B}$, then $A_2 \in \mathcal{B}$. Can do homological algebra in $(\mathcal{E}, \mathcal{S})$ relative to \mathcal{S} . Leads to projective and injective objects, $\operatorname{Ext}^i_{\mathcal{E}}(-, -)$, derived categories...

Exact categories

Definition

An exact category is a conflation category $(\mathcal{E}, \mathcal{S})$ where \mathcal{E} is equivalent to a full extension-closed subcategory of an abelian category \mathcal{A} such that \mathcal{S} are the kernel-cokernel pairs in \mathcal{E} which are sent to short exact sequences in \mathcal{A} .

We often omit S and simply write \mathcal{E} for (\mathcal{E}, S) . A long exact sequence in \mathcal{E} is a complex

 $\ldots \longrightarrow E_{i-1} \longrightarrow E_i \longrightarrow E_{i+1} \longrightarrow \ldots$

Exact categories

Definition

An exact category is a conflation category $(\mathcal{E}, \mathcal{S})$ where \mathcal{E} is equivalent to a full extension-closed subcategory of an abelian category \mathcal{A} such that \mathcal{S} are the kernel-cokernel pairs in \mathcal{E} which are sent to short exact sequences in \mathcal{A} .

We often omit S and simply write \mathcal{E} for (\mathcal{E}, S) . A long exact sequence in \mathcal{E} is a complex

for which there exists objects F_i and dashed arrows such that each triangle commutes and each diagonal is a conflation.

d-cluster tilting

Fix an integer $d \ge 1$ and an exact category \mathcal{E} .

Definition (lyama'06)

A full subcategory $\mathcal{M} \subset \mathcal{E}$ is d-cluster tilting if

- $\operatorname{Ext}^{i}_{\mathcal{E}}(M, M') = 0$ for all 0 < i < d and $M, M' \in \mathcal{M}$.
- For all $E \in \mathcal{E}$ there exists exact sequences in \mathcal{E}

$$0 \to M_d \to \cdots \to M_1 \to E \to 0$$
$$0 \to E \to N_1 \to \cdots \to N_d \to 0$$

where $M_1, \ldots, M_d, N_1 \ldots, N_d \in \mathcal{M}$.

 $\bullet \ \mathcal{M}$ is closed under finite direct sums and summands.

 $M \in \mathcal{E}$ is *d*-cluster tilting if add *M* is a *d*-cluster tilting subcategory of \mathcal{E} .

Note that $\mathcal{M} \subset \mathcal{E}$ is 1-cluster tilting if and only if $\mathcal{M} = \mathcal{E}$. In particular, $M \in \mathcal{E}$ is 1-cluster tilting if and only if add $M = \mathcal{E}$.

Why?

d-cluster tilting subcategories are used in many different contexts.

- Proof of the Donovan Wemyss conjecture (Jasso-Keller-Muro'22).
- Partially wrapped Fukaya categories (Dyckerhoff–Jasso–Lekili'21).
- Silting complexes (via functorially finite higher torsion classes) (work in progress).
- NCCR's of isolated singularities.
- Higher dimensional McKay correspondence.
- Frobenius exact enhancements of cluster categories.

Why?

d-cluster tilting subcategories are used in many different contexts.

- Proof of the Donovan Wemyss conjecture (Jasso-Keller-Muro'22).
- Partially wrapped Fukaya categories (Dyckerhoff–Jasso–Lekili'21).
- Silting complexes (via functorially finite higher torsion classes) (work in progress).
- NCCR's of isolated singularities.
- Higher dimensional McKay correspondence.
- Frobenius exact enhancements of cluster categories.

d-cluster tilting in exact categories.

э

Main results

Reconstruction problem

 \mathcal{E} exact category, $M \in \mathcal{E}$ *d*-cluster tilting. Can we determine \mathcal{E} from $\text{End}_{\mathcal{E}}(M)$? NO *M* is always *d*-cluster tilting in add *M* (with split exact structure) but add $M \neq \mathcal{E}$ in general. Need additional structure!

Theorem (Jasso'16)

Any d-cluster tilting subcategory of \mathcal{E} is a d-exact category.

This is sufficient!

Theorem (K'25)

Any weakly idempotent complete d-exact category is d-cluster tilting in a unique (up to exact equivalence) exact category.

Weakly idempotent complete means all split epimorphisms have kernels, or equivalently, all split monomorphisms have cokernels.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Finding *d*-exact categories is often easier than finding *d*-cluster tilting subcategories.

- Any additive category has a maximal *d*-exact structure (Klapproth'24).
- Subfunctors of Ext^d(-, -) for d-cluster tilting subcategories (Hafezi–Asadollahi–Zhang'25)

The definition of *d*-exact categories generalizes the axiomatic characterization of exact categories. We first recall this. Fix a conflation category $(\mathcal{E}, \mathcal{S})$. A morphism $f: E \to E'$ in \mathcal{E} is a

- *inflation* if
$$(E \xrightarrow{t} E' \xrightarrow{g} E'') \in S$$
 for some g.

- deflation if $(E'' \xrightarrow{g} E \xrightarrow{f} E') \in S$ for some g.

Theorem (Quillen-Gabriel embedding theorem)

A conflation category $(\mathcal{E}, \mathcal{S})$ is an exact category if and only if

$$(0 \to 0 \to 0) \in \mathcal{S}.$$

Inflations and deflations are closed under composition.

So For all $(E_1 \xrightarrow{f} E_2 \to E_3) \in S$ and morphisms $E_1 \xrightarrow{g} F_1$ there exists a commutative diagram

where
$$(E_1 \xrightarrow{\begin{pmatrix} f \\ g \end{pmatrix}} E_2 \oplus F_1 \xrightarrow{\begin{pmatrix} h & -k \end{pmatrix}} F_2) \in S.$$

Dual of (3).

A *d*-exact category is defined roughly by replacing the short exact sequences with longer exact sequences.

Sondre Kvamme

d-exact categories and d-cluster tilting

June 26, 2025

16 / 29

Definition (Jasso'16)

Let C be an additive category. A *d*-exact sequence in C is a complex

$$X_0 \to \cdots \to X_{d+1}$$

in $\ensuremath{\mathcal{C}}$ such that

$$0
ightarrow \mathcal{C}(X, X_0)
ightarrow \cdots
ightarrow \mathcal{C}(X, X_{d+1})$$

and

$$0 \rightarrow \mathcal{C}(X_{d+1}, X) \rightarrow \cdots \rightarrow \mathcal{C}(X_0, X)$$

are exact for all $X \in C$.

Definition

Sond

A *d*-conflation category is a pair $(\mathcal{C}, \mathcal{X})$ where

- \mathcal{C} is an additive category
- \mathcal{X} is a class of *d*-exact sequences in \mathcal{C} , closed under *homotopy* equivalence.

The elements of $\mathcal X$ are called *admissible d*-exact sequences.

re Kvamme d-exact categories and d-cluster tilting	June 26, 2025
--	---------------

17 / 29

Fix a *d*-conflation category $(\mathcal{C}, \mathcal{X})$. A morphism $f: E \to E'$ in \mathcal{C} is a - *admissible monomorphism* if $(E \xrightarrow{f} E' \to E_2 \to \cdots \to E_{d+1}) \in \mathcal{X}$ for some complex $E' \to E_2 \to \cdots \to E_{d+1}$.

- admissible epimorphism if $(E_0 \to \cdots \to E_{d-1} \to E \xrightarrow{f} E') \in \mathcal{X}$ for some complex $E_0 \to \cdots \to E_{d-1} \to E$.

Theorem (Quillen-Gabriel embedding theorem)

- A conflation category $(\mathcal{E}, \mathcal{S})$ is an exact category if and only if
 - $(0 \to 0 \to 0) \in \mathcal{S}.$
 - Inflations and deflations are closed under composition.

So For all $(E_1 \xrightarrow{f} E_2 \to E_3) \in S$ and morphisms $E_1 \xrightarrow{g} F_1$ there exists a commutative diagram

$$\begin{array}{cccc}
E_1 & \stackrel{r}{\longrightarrow} & E_2 \\
\downarrow^g & & \downarrow^h \\
F_1 & \stackrel{k}{\longrightarrow} & F_2
\end{array}$$

where
$$(E_1 \xrightarrow{(g)} E_2 \oplus F_1 \xrightarrow{(h - k)} F_2) \in S$$
.

(f)

Oual of (3).

Definition

- A *d*-conflation category $(\mathcal{C}, \mathcal{X})$ is a *d*-exact category if and only if
 - $(0 \to 0 \to \cdots \to 0) \in \mathcal{X}.$
 - Admissible monomorphisms and admissible epimorphisms are closed under composition.
 - For all $(E_0 \to E_1 \to \cdots \to E_{d+1}) \in \mathcal{X}$ and morphisms $E_0 \to F_0$ there exists a morphism of complexes

where the cone $(E_0 \rightarrow E_1 \oplus F_0 \rightarrow \cdots \rightarrow E_d \oplus F_{d-1} \rightarrow F_d)$ is in \mathcal{X} . Q Dual of (3).

d = 1 recovers the notion of exact categories. We often omit \mathcal{X} and simply write \mathcal{C} for $(\mathcal{C}, \mathcal{X})$.

Theorem (Jasso'16)

Let \mathcal{E} be a weakly idempotent complete exact category. Let \mathcal{M} be a d-cluster tilting subcategory of \mathcal{E} . Then $(\mathcal{M}, \mathcal{X})$ is a d-exact category where \mathcal{X} consists of all complexes in \mathcal{M}

$$0 \rightarrow X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_{d+1} \rightarrow 0$$

which are exact in \mathcal{E} .

Theorem (K'25)

Let \mathcal{M} be a weakly idempotent complete d-exact category. Then there exists an exact category \mathcal{E} and a d-cluster tilting subcategory \mathcal{N} of \mathcal{E} such that $\mathcal{M} \cong \mathcal{N}$ as d-exact categories. Furthermore, \mathcal{E} is unique up to exact equivalence.

Idea of proofs

Uniqueness

Theorem (K'25)

Let \mathcal{M} be a weakly idempotent complete d-exact category. Then there exists an exact category \mathcal{E} and a d-cluster tilting subcategory \mathcal{N} of \mathcal{E} such that $\mathcal{M} \cong \mathcal{N}$ as d-exact categories. Furthermore, \mathcal{E} is unique up to exact equivalence.

Uniqueness follows from a universal property of the functor $\mathcal{M} \to \mathcal{E}$.

Definition

Let \mathcal{M} be a *d*-exact category and \mathcal{E} an exact category. A functor $F: \mathcal{M} \to \mathcal{E}$ is *exact* if whenever $(X_0 \to X_1 \to \cdots \to X_{d+1})$ is an admissible *d*-exact sequence in \mathcal{M} , then

$$0 \rightarrow F(X_0) \rightarrow F(X_1) \rightarrow \cdots \rightarrow F(X_{d+1}) \rightarrow 0$$

is exact in \mathcal{E} .

イロト イボト イヨト イヨト

э

Uniqueness

Theorem (K'25)

Let \mathcal{M} be a d-cluster tilting subcategory of an exact category \mathcal{E} . The following hold.

- The inclusion $\mathcal{M} \to \mathcal{E}$ is exact.
- For any weakly idempotent complete exact category \mathcal{E}' and exact functor $F : \mathcal{M} \to \mathcal{E}'$ there exists an exact functor $\mathcal{E} \to \mathcal{E}'$ extending F, unique up to isomorphism.

→

How to show that any d-exact category is equivalent to a d-cluster tilting subcategory?

The following notion plays a central role.

Definition

Let \mathcal{U} be a full subcategory of an exact category \mathcal{E} . We say that \mathcal{U} is *d*-extension closed if any exact sequence

$$0 \to U \to E^1 \to \cdots \to E^d \to V \to 0$$

with $U, V \in \mathcal{U}$ is Yoneda equivalent to an exact sequence

$$0 \rightarrow U \rightarrow U^1 \rightarrow \cdots \rightarrow U^d \rightarrow V \rightarrow 0$$

with $U^1 \ldots, U^d \in \mathcal{U}$.

d = 1 correspond to normal extension closure, since Yoneda equivalent short exact sequences have isomorphic middle term.

Sondre Kvamme

d-exact categories and d-cluster tilting

June 26, 2025

Definition

Let \mathcal{M} be a *d*-exact category.

A functor F: M^{op} → Ab is called *left exact* if for any admissible exact sequence (X₀ → X₁ → ··· → X_{d+1}) the sequence 0 → F(X_{d+1}) → F(X_d) → F(X_{d-1}) is left exact.
L(M) = {F: M^{op} → Ab | F is left exact}.

Any representable functor $\mathcal{M}(-, X)$ is left exact. Hence, the Yoneda embedding induces a functor $\mathcal{M} \to \mathcal{L}(\mathcal{M})$.

Theorem (Ebrahimi'21, Ebrahimi–Nasr-Isfahani'23)

Let \mathcal{M} be a d-exact category. Then $\mathcal{L}(\mathcal{M})$ is abelian and the essential image of $\mathcal{M} \to \mathcal{L}(\mathcal{M})$ is d-rigid and closed under d-extensions.

Here *d*-rigid means $\operatorname{Ext}^{i}_{\mathcal{L}(\mathcal{M})}(\mathcal{M}(-, X), \mathcal{M}(-, Y)) = 0$ for all $X, Y \in \mathcal{M}$ and 0 < i < d.

d=1 recovers Quillen-Gabriel embedding theorem d = 1 recovers Q and d = 1 recovers Q

Theorem (Ebrahimi'21, Ebrahimi-Nasr-Isfahani'23)

Let \mathcal{M} be a d-exact category. Then $\mathcal{L}(\mathcal{M})$ is abelian and the essential image of $\mathcal{M} \to \mathcal{L}(\mathcal{M})$ is d-rigid and closed under d-extensions.

We show

Theorem (K'25)

Let \mathcal{E} be an exact category, and let \mathcal{U} be a weakly idempotent complete full subcategory of \mathcal{E} . Assume \mathcal{U} is d-rigid, and d-extension-closed. Then there exists a unique extension closed subcategory \mathcal{F} of \mathcal{E} such that

- \mathcal{U} is a d-cluster tilting subcategory of \mathcal{F} .
- The map $\operatorname{Ext}^d_{\mathcal{F}}(U, V) \to \operatorname{Ext}^d_{\mathcal{E}}(U, V)$ is an isomorphism for all $U, V \in \mathcal{U}$.

Combining these two results we get that any weakly idempotent complete d-exact category is equivalent to a d-cluster tilting subcategory.

→ < ∃ →</p>

э

Theorem (K'25)

Let \mathcal{E} be an exact category, and let \mathcal{U} be a weakly idempotent complete full subcategory of \mathcal{E} . Assume \mathcal{U} is d-rigid, and d-extension-closed. Then there exists a unique extension closed subcategory \mathcal{F} of \mathcal{E} such that

- \mathcal{U} is a d-cluster tilting subcategory of \mathcal{F} .
- The map $\operatorname{Ext}^d_{\mathcal{F}}(U, V) \to \operatorname{Ext}^d_{\mathcal{E}}(U, V)$ is an isomorphism for all $U, V \in \mathcal{U}$.

Strategy: define

 $\mathcal{U}^d(\mathcal{E}) = \{ E \in \mathcal{E} \mid \exists \ 0 \to E \to U^1 \to \dots \to U^d \to 0 \text{ exact where } U^i \in \mathcal{U} \ \forall i \}$

 $\mathcal{U}_d(\mathcal{E}) = \{ E \in \mathcal{E} \mid \exists \ 0 \to U_d \to \cdots \to U_1 \to E \to 0 \text{ exact where } U_i \in \mathcal{U} \ \forall i \}$

 $\mathcal{U} \subset \mathcal{E}$ being *d*-rigid and *d*-extension closed implies $\mathcal{U}^d(\mathcal{E})$ and $\mathcal{U}_d(\mathcal{E})$ are extension closed and \mathcal{U} is *d*-rigid and *d*-extension closed in $\mathcal{U}^d(\mathcal{E})$ and $\mathcal{U}_d(\mathcal{E})$.

Theorem (K'25)

Let \mathcal{E} be an exact category, and let \mathcal{U} be a full subcategory of \mathcal{E} which is weakly idempotent complete, *d*-rigid, and *d*-extension-closed. Then there exists a unique extension closed subcategory \mathcal{F} of \mathcal{E} such that

- \mathcal{U} is a d-cluster tilting subcategory of \mathcal{F} .
- The map $\operatorname{Ext}^d_{\mathcal{F}}(U, V) \to \operatorname{Ext}^d_{\mathcal{E}}(U, V)$ is an isomorphism for all $U, V \in \mathcal{U}$.

Can iterate the construction of $\mathcal{U}^d(\mathcal{E})$ and $\mathcal{U}_d(\mathcal{E})$ to get a sequence of subcategories

$$\cdots \subseteq \mathcal{U}^{d}\mathcal{U}_{d}\mathcal{U}^{d}(\mathcal{E}) \subseteq \mathcal{U}_{d}\mathcal{U}^{d}(\mathcal{E}) \subseteq \mathcal{U}^{d}(\mathcal{E}) \subseteq \mathcal{E}.$$

We show that this sequence stabilizes after two steps and furthermore

$$\mathcal{U}^{d}\mathcal{U}_{d}(\mathcal{E})=\mathcal{U}_{d}\mathcal{U}^{d}(\mathcal{E}).$$

This is the extension closed subcategory \mathcal{F} that we wanted!